Unit 05 Day 03 - Overrides and More.notebook

1. Log in
2. Today We Begin Unit 5

- Inheritance (overriding and more)
- Polymorphism

- Abstract Classes
- Interfaces

November 27, 2015

Examine our current Cat class ... public class Cat extends Animal{

public boolean meowing;

public Cat(){
super();
meowing=false;

J

public void makeMeow(){
meowing=true;

J

public void stopMeow(){
meowing=false;
super.goToSleep();

J

public boolean getMeowStatus(){

return meowing;

Oct 16-7:52 AM

Cat class can borrow death() public class Cat extends Animal{

public boolean meowing;
public Cat(){

super();

Since it has inherited Animal ...

meowing=false;

7
public void makeMeow(){

public void death() {

living=false; .
meowing=true;

7
public void stopMeow(){

meowing=false;
super.goToSleep();

]

public boolean getMeowStatus(){

return meowing;

Nov 11-3:13 PM

Nov 11-3:13 PM

. .
But, doesn't a cat have 9 lives??? public class Cat extends Animal{

public boolean meowing;
public Cat(){
super();
meowing=false;
J
public void makeMeow(){

public void death() { p—

living=false; .
meowing=true;

J
1 public void stopMeow(){

meowing=false;
*** We should override death() *** 9

super.goToSleep();
*** A cat should have a different method *** per.g PO,

J
public boolean getMeowStatus(){

return meowing;

First, every cat needs 9 lives ...

public class Cat extends Animal{

Need a new instance public boolean meowing;
variable for cat objects. ————————> public int lives;
(track number of lives) public Cat(){

super();

meowing=false;

lives=9;

Nov 11-3:13 PM

Nov 11-3:13 PM

First, every cat needs 9 lives ...

public class Cat extends Animal{

Need a new instance public boolean meowing;
variable for cat objects. = public int lives;
(track number of lives) public Cat(){
super();
meowing=false;
Now every cat that =———————— lives=9;
gets created starts }
with 9 lives!
}

Nov 11-3:13 PM

Unit 05 Day 03 - Overrides and More.notebook

We want a death() method to
override the inherited death()...

@Override

This method will now run for
all Cat objects instead of the =~ =——>
Animal death() method!

public class Cat extends Animal{

public boolean meowing;

public int lives;

public Cat(){
super();
meowing=false;
lives=9;

}

@Override //capital O

public void death(){
this.lives—-;
if(this.lives==0)
this.living=false;

Nov 11-3:13 PM

1. They can add new instance variables
. They can add new methods

. They can use inherited methods

. They can override inherited methods

o N o g b~ W N

Review of subclasses

. They cannot change public things to private

. They cannot change inherited static methods
. They should have their own constructors

. They cannot access inherited private data without the aid of a method

November 27, 2015

Cat class review ... public class Cat extends Animal{
public boolean meowing;
public int lives;
public Cat(){

super();

meowing=false;
lives=9;

}

public void makeMeow(){

meowing=true;
goToSlees() J

N public void stopMeow(){
getLivingStatus()

meowing="alse;

super.goToSleep(;
}
public boolean getMeowStatus(){
return meowing;
}
@Override
public void death(){
this.lives--;
f(this.lives==0)

this.living=false;

Nov 11-3:13 PM

Creating various objects with our classes ...

Cat bigCat= new Cat();

Nov 12-2:53 PM

Creating various objects with our classes ...

Cat bigCat= new Cat();

|

Create a cat

Object called
bigCat ...
bigat Tl o
——
mie [

Nov 12-3:33 PM

Creating various objects with our classes ...

Cat bigCat= new Cat();
{

Fill it using the constructor
method Cat()...

> Cat

—
:

living

bigCat

awake

Nov 12-3:33 PM

Nov 12-3:33 PM

Unit 05 Day 03 - Overrides and More.notebook November 27, 2015

Technically the following works, but ... Creating various objects with our classes ...
Animal smallCat= new Cat(); Animal smallCat = new Cat();
Create an animal
Object called
bigCat ...
*** Create a new Animal called smallCat using the Cat Constructor *** smallCat =——— Animal
wite [
Note:
Animal DOES NOT have:
meowing
lives
Nov 12-3:33 PM Nov 12-3:33 PM
Creating various objects with our classes ... Notice, this could be a problem ...
Animal smallCat = new Cat();
Animal smallCat = new Cat();
smalicat ——| Animal
smallCat ——f Animal living
awake
living smallCat.living //acceptable code
awcke smallCat lives //NOT VALID, smallCat is an Animal
Arimal DOES NOT have:
Ir;\:::ing *** Cat() constructor may have been used but this is an Animal Object ***
Nov 12-3:33 PM Nov 12-3:33 PM
There is a way though ... lets review Casting ... In other words ...
Remember: (int)(3.47) = 3 (IHT)(68773238)
(int)(4.98) = 4 |
(double)(5) = 5.0 make this
become
Casting: Forcing something to become something elsel
Nov 12-3:33 PM Nov 12-3:33 PM

Unit 05 Day 03 - Overrides and More.notebook November 27, 2015

In other words ... Casting: making something become something else ...
(int)(6.8773238)
this — make this
become
Nov 12-3:33 PM Nov 12-3:33 PM

Casting: making something become something else ... Casting: making something become something else ...

I want my Animal fo become a Cat so I can make it meow! T want my Animal to become a Cat so I can make it meow!

(Cat)(Animal)
this make this
become
Nov 12-3:33 PM Nov 12-3:33 PM
Casting: making something become something else ... Example:
I want my Animal fo become a Cat so I can make it meow!))) ‘
Animal cat5 = new Cat(); //Build an Animal using Cat constructor

(Cat)(animalName)

cath —— Animal
this make this
become

awake -falsa

wakeUp()
goToSleep()
getSleepStatus()
death()
getLivingStatus()

Nov 12-3:33 PM Nov 12-3:33 PM

Unit 05 Day 03 - Overrides and More.notebook

Example:

Animal cat5 = new Cat();

System.out.printin(cat5.living);

//Build an Animal using Cat constructor

/Mworks ... animal=living

November 27, 2015

Example:

Animal cat5 = new Cat();

System.out.printin(cat5.living);

//Build an Animal using Cat constructor

//works ... animal=living

catb.getSleepStatus(); /fworks ... animal
cath —— Animal
living
awake
wakeUp()
goToSleep()
getSleepStatus()
death()
getLivingStatus()
Nov 12-3:33 PM
Example:

Animal cat5 = new Cat();
System.out.printin(cat5.living);
catb.getSleepStatus();

catb.lives;

... but we want to cast cat5 into a cat!
(Cat)(animalName)

this make this

become

//Build an Animal using Cat constructor
/Mworks ... animal=living

//works ... animal

//DOES NOT WORK, this is an animal

cath — Animal

living

awake

wakeUp()
goToSleep()
getSleepStatus()
death()
getlivingStatus()

Nov 12-3:33 PM

catb.getSleepStatus(); //works ... animal
catb.lives; //DOES NOT WORK, this is an animal
cats —— Animal
living
awake
wakeUp()
goToSleep()
getSleepStatus()
death()
getLivingStatus()
Nov 12-3:33 PM
Example:

Animal cat5 = new Cat();
System.out.printin(cat5.living);
catb.getSleepStatus();
catb.lives;

((Cat)(catb)).lives;

... but we want to cast catb into a cat!

(Ca‘r)(cml‘5)

this <« Make this

become

//Build an Animal using Cat constructor
//works ... animal=living

/Mworks ... animal

//DOES NOT WORK, this is an animal
//WORKS! catb is now a cat!

cath — Animal

living

awake

wakeUp()
goToSleep()
getSleepStatus()
death()
getLivingStatus()

Now Analyze this code:

Animal cat5 = new Cat();
System.out.printin(cat5.living);
catb.getSleepStatus();

catb.lives;

//Build an Animal using Cat constructor
/Mworks ... animal=living

//works ... animal

//DOES NOT WORK, this is an animal

System.out.printin(((Cat)cat5).getMeowStatus());

System.out.printin(((Cat)cat5).lives);
Cat cat6 = ((Cat)cat5);

System.out.printin(cat6.lives);

*** This is tricky so practice a little ***

Cat
Instance Variables Constructed
meowing
lives
living
awake
catt Methods Animal
makeMeow()
stopMeow() living
getMeowStatus() L—F awake
dc«'z(»:}()() wakeUp()
wakeUp(ToSleep()
goToSleep
ToSle
::;;;;;M) getSleepStatus()
getlivingStatus() 6o
getLivingStatus()

Nov 12-3:33 PM

Nov 12-3:33 PM

Things to do ...

1. Wrap Up Unit 5 WS 01-02

2. Work on Unit 5 WS03 More on Inheritance

Oct 16-9:12 AM

